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The forced vibrations of a transverse isotropic hollow cylinder, loaded by an axisymmetric
harmonic force at the butt ends, are studied using the homogeneous solutions method.
A dispersion equation for the corresponding three-dimensional elastic problem is derived
that relates the wave number to the frequency of oscillations. This equation is solved by an
asymptotic method in the case of a thin wall and the possible waveforms of the tube are
found.
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1. INTRODUCTION

Three-dimensional dynamic problems for solid and hollow elastic cylinders have been
considered in earlier studies. Free vibrations of isotropic elastic solid cylinders were
investigated within three-dimensional linear theory in references [1, 2]. In reference [1] the
unknown displacements were sought in the form of series, each term of which satis"es the
governing equations of the motion. Numerical results of reference [1] are in excellent
agreement with experimental data in reference [3].

The natural frequencies and modes of free vibrations of solid cylinders with polygonal
cross-section were studied in reference [2] by the energy method. Di!erent boundary
conditions on the butt ends were analyzed. The numerical results were presented for the
solid cylinders with square and hexagonal cross-sections; di!erent values of the relation of
the cylinder length to diameter of the typical cross-section were considered. The results of
reference [2] can be used as the criterion of precision of the simpli"ed beam theories.
Dynamics of the solid circular cylinder with di!erent boundary conditions on the butt ends
was considered in reference [4]. The three-dimensional solutions given in reference [4]
elucidate the region of validity of Timoshenko's shear deformation beam theory. Numerical
results of this paper are in excellent agreement with experimental data [3].

Numerical analysis of free vibrations of the "nite-length solid and hollow isotropic elastic
cylinders with free butt ends is presented in reference [5]. The results were obtained using
the "nite elements method within the three-dimensional linear theory of elasticity in the
lowest frequency region. For a hollow cylinder the frequencies of the free vibrations were
tabulated as functions of non-dimensional thickness and length. The results of reference [5]
0022-460X/01/270177#18 $35.00/0 ( 2001 Academic Press
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can be used for comparison with approximate analytic solutions for both thin and thick
shells.

In references [6, 7] the energy method was used for analysis of the frequencies and modes
of free vibrations of "nite-length hollow elastic isotropic cylinders with curvilinear free
surfaces and arbitrary cross-section. The qualitative peculiarities of the natural frequencies
and modes of vibrations, governed by the shape and characteristic thickness of the
cylinder's cross-section, were established. For instance, it was shown that for hollow
cylinders with su$ciently small wall thickness, the bending modes of vibrations are the
main ones in the lowest frequency region. Note that free vibrations of cylindrical elastic
isotropic thin shells with arbitrary cross-section and "nite length were considered in
references [8}10] on the basis of the two-dimensional (applied) Kirchho!}Love theory [11]
by the asymptotic method. It was shown, in particular, that the bending modes of
vibrations, the most pronounced in the lowest frequency region, have a spatially local
nature and are localized on the part of the shell's surface, having relatively small sti!ness.

In references [12}14] the forced axisymmetrical vibrations of isotropic elastic hollow
cylinders with free curvilinear surfaces were studied on the basis of linear dynamic
equations of three-dimensional theory of elasticity by the method of homogenous solutions.
It was shown that this method reveals the basic features of the three-dimensional elastic
problem for an isotropic shell and represents an e!ective tool for solving speci"c boundary
problems. It can be used also for the accuracy estimates of the applied (two-dimensional)
theories. However, the relation between three- and two-dimensional dynamic problems for
an anisotropic elastic shell is studied insu$ciently. Particularly, the problem of the limit
transition from the three-dimensional problem to the two-dimensional one in the dynamic
theory of anisotropic elasticity is of special inrterest. Existing dynamic applied theories for
the anisotropic shells are based on di!erent simplifying assumptions and need comparative
analysis of their accuracy. Such an analysis can be done only within a three-dimensional
approach that also permits the areas of applicability for each of these theories to be found.

2. THE DISPERSION EQUATION

Consider the axisymmetric dynamic problem of the theory of elasticity for the transverse
isotropic hollow cylinder. Introduce the cylindrical co-ordinate system r, u, z and suppose
that r
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Arbitrary boundary conditions, changing in time with the frequency u can be adopted at
the butt ends. The solution of equations (1) and (2) is sought in the form
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In equations (6) the relations of elasticity for transverse isotropic cylinder are used [15]. The
solution of equations (5) can be represented in the form
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From the homogenous boundary conditions (equation (6)), the following dispersion
equation is given:
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3. ASYMPTOTIC ANALYSIS OF THE DISPERSION EQUATION

The left side of equation (9) as an integer function of the parameter k has a limited set of
zeros with the accumulation point at in"nity. Suggesting that the cylinder is thin walled, let
introduce
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and assume that e@1. Substituting relations (10) into equation (9) gives
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In the case of j"O(1); eP0 there are three groups of the zeros of the function D (k, j, e):
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Similar to the isotropic case [12], it can be shown that all other zeros of the function
D(k, j, e) tend to in"nity when eP0. They can be subdivided into two groups depending on
their behaviour at eP0: (1) ek

k
P0 when eP0; (2) ek
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as in reference [12], it can be shown that the possibility of ek
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As follows from equations (17) and (19), in the case j2
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Consider the following possible cases for equation (8):
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For cases (a) and (b) after substitution of equation (20) into equation (9) and transformation
of the result with the use of asymptotic expansions of the functions J
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For cases (c) and (d) similar formulae follow from the corresponding results of cases (a)
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coincide with equations for characteristic factors of the Saint}Venant boundary e!ects in
the theory of transverse isotropic thick plates [16, 17]. In the same references the roots of
these equations were also investigated. Properties of these roots are very important for a full
description of the stress}strain state of the shell. As noted in reference [18], in the case of
essential anisotropy, corresponding to large values of G
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, the Saint}Venant boundary layer

damps weakly and the boundary layer solution represents, in fact, the penetrating solution.
As a result, the stress}strain state of the transverse isotropic and isotropic shells is
essentially di!erent.
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These roots correspond to the so-called super-low-frequency vibrations of the cylinder.
The possibility of the appearance of such vibrations in thin elastic shells has been

discussed in reference [19].
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Consider now the particular cases when (1) j2
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k0
e~1@3#k

k1
e1@3#2, (29)
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where

k6
k0
!3b

0
(E

0
G

0
)~1c

0
k2
k0
#3l

1
l
2
b
0
E~2

0
"0, k

k1
"[2k

k0
(c

0
b
0
!E

0
G

0
k4
k0

)]~1

Mc
0
b
0
(1!2b

0
)E~1

0
#(2/3)G2

0
[b

0
#l

1
(1#l)#E

1
G~1

1
!2(1#l)E

0
G

0
]k4

k0
N.

These relations give six roots, of which two correspond to the roots de"ned by
equations (13) and (14) while the four remaining ones correspond to the roots de"ned by
equation (18). These groups of zeros of the dispersion equation at c

0
P0 coincide

completely with the zeros de"ned by equation (26).
For case 3

k
k
"k

k0
ea@4~1@2#k

k1
e1@2~5a@4#2, k4

k0
!3c

0
b
0
(E

0
G

0
)~1"0,

k
k1
"!l

1
l
2
G

0
(4c

0
E

0
k
k0

)~1. (30)

Substitution of j2
0
!G

0
"c

0
ea into equation (17) leads to the form of equations (30) that

coincides with the one de"ned by equations (18) and (19). Finally, in case 4

k
k
"k

k0
e~1@3#k

k1
ea~1#2, k6

k0
#3l

1
l
2
b
0
E~2

0
"0, k

k1
"c

0
b
0
(2E

0
G

0
k
k0

)~1. (31)

At c
0
P0 these zeros coincide with the ones de"ned by equation (26). Note that such

unusual behaviour of the roots of the dispersion equation in the isotropic case (j2
0
P1) has

been investigated in reference [14].
Analysis of the modes corresponding to the roots of the dispersion equation obtained

above shows that at j2
0
(G

0
the character of the integrals of the dynamic theory of

elasticity does not di!er qualitatively from the static integrals of the theory of elasticity. On
the contrary, in the case j2

0
'G

0
there is an essential di!erence. Therefore, it is natural to

consider the value j2
0
"G

0
as &&the turning point'', corresponding to the change in the

character of the dynamic integrals of the theory of elasticity.
For the special case (2) j2

0
"b~1

0
G

0
, the zeros, de"ned by equation (13), vanish and the

ones de"ned by equations (18) and (19), take the form

k4
k0
!3l2

2
"0, k

k1
"0, k

k2
"(10b

0
k
k0

)~1M4l2
2
(1#l) (E

0
G

0
!l

1
)

#10(1#l)b
0
(E

0
G

0
!l

1
)G

0
E~1!5[b

0
#E

1
G~1

1
!l

1
(1#l)]G

0
E~1

0
N.

Thus, in this case four growing zeros are obtained, two of them are purely imaginary.
Note that the zeros, described by equations (21)}(23), also remain valid in this case.

Consider the case when the frequency parameter j2 tends to in"nity when eP0. The
vibrations, corresponding to this case, following reference [19], can be called the
extra-high-frequency ones. It is possible to show that all zeros of the function D (k, j, e) tend
to in"nity when jPR at eP0.

Consider separately the following three limiting cases at eP0: (1) jeP0; (2) jePO(1);
(3) jePR.

For case (1) assume that the main terms of the asymptotic for k
k
and j

0
have the form

k
k
"k

k0
e~b, j

0
"Ke~q, k

k0
"O(1), K"O(1), 0(b(1, 0(q(1. (32)

It is simple to show that the asymptotic process is consistent in this case only if the
inequality q)b is true. Consider separately the cases: q"b and q(b. For the case q"b
the k

k
value is sought in the form

k
k
"k

k0
e~b#k

k1
eb#2 (0(b(1/2),

k
k
"k

k0
e~b#k

k1
e2~3b#2 (1/2)b(1), j

0
"Ke~b. (33)
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Substituting these expansions into equation (12) gives

k
k0
"$iK (b

0
E~1

0
G~1

0
)1@2, k

k1
"l2

2
(2k

k0
)~1 (0(b(1/2), k

k1
"l2

2
(2k

k0
)~1

#(6k
k0

E
0
G

0
)~1K4c

1
(b"1/2), k

k1
"(6k

k0
E
0
G

0
)~1K4c

1
(1/2(b(1),

c
1
"E~1

0
b2
0
(2!G~1

0
)#2E

1
G~1

1
b
0
!2l

2
(1#l)b

0
!4(1#l)b

0
(2#b~1

11
)

!(1!l
1
!ll

1
!l

1
l
2
)2E~1

0
G~2

0
#2(1!l2 )G~1

0
#4(1#l)

!4l
1
l
2
(1#l)(1#G~1

0
).

When q(b equations (32) and (12) give for k
k0

and K, keeping only the main terms
of expansions:

D(k, j, e),AS[!E
0
G

0
K2k2

k0
#O(e2b~2q)] e~2b~2q

#(1/3)ME2
0
G2

0
k6
k0
#O[max(e2~2b, e2b~2q)]Ne2~6bT"0.

It follows that q"2b!1. If q'0, then b'1/2. Note that the case q"0, corresponding
to the value b"1/2, was investigated above.

The values of k
k
and j

0
are sought in the form

k
k
"k

k0
e~b#k

k1
e3b~2#2 (1/2(b(2/3),

k
k
"k

k0
e~b#k

k1
e2~3b#2 (2/3)b(1), j

0
"Ke1~2b. (34)

Substituting equation (34) into equation (12) gives

k4
k0
!3b

0
K2 (E

0
G

0
)~1"0, k

k1
"!(4K2G

0
)~1k

k0
(1/2(b(2/3),

k
k1
"!(4K2G

0
)~1k

k0
!(20E

0
G

0
k
k0

)~1K2c
2

(b"2/3),

k
k1
"!(20E

0
G

0
k
k0

)~1K2c
2

(2/3(b(1), c
2
"5b

0
(2G

0
!1)#10E

1
G

0
G~1

1

!10l
1
(1#l)G

0
!8(1#l) (E

0
G

0
!l

1
).

Thus, in this case there are four zeros, growing as e~b, two of which are real and two
purely imaginary. Note that purely imaginary zeros correspond to the so-called irregular
degeneration [20].

Note that an additional case is possible also, when

k
k
"e~1d

k
#O (e1~2b), j"Ke~b, 0(b(1.

In this case, the "rst term of the asymptotics receives zeros determined by relations
(20)}(23).

So, in the cases j"Ke~b and Ke1~2b correspondingly two and four zeros are obtained,
growing as e~b, and the countable set of zeros, growing as e~1.

For case (2) the solution is sought in the form

k
k
"e~1d

k
#O (e), j"se~1, (35)
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Equation (35) is substituted into equation (12) and the result is transformed to account for
the asymptotic expansions of Bessel's functions for large values of the argument. It leads to
the following equation for d

k
:

[h
1k

i
21

sin (h
1k

) cos (h
2k

)!h
2k

i
12

sin (h
2k

) cos (h
1k

)] [h
1k

i
21

cos (h
1k

) sin (h
2k

)

!h
2k

i
12

sin (h
1k

) cos (h
2k

)]"0. (36)

Here h
nk
"Jq

nk
, where q

nk
are roots of the quadratic equation

b
11

q2![(b
11

b
33
!b2

13
!2b

13
)d2

k
#(1#b

11
)s2]q#(d2

k
#s2) (b

33
d2
k
#s2 )"0

(37)

and i
mj

(m, j"1, 2; mOj ) are determined according to the formula

i
mj
"(b

11
b
33
!b2

13
) (h2

mk
#s2)d2

k
#b

11
s4!(b

11
h2
jk
#2b

13
d2
k
#b

33
d4
k
) s2.

In the derivation of equation (36) it is assumed that the roots of equation (37) are
real and di!erent. Note, that at a given value of j equation (36) de"nes a countable
set of roots d

k
. For the isotropic case this equation turns into the Rayleigh}Lamb

equation [13].
In case (3), denoting ek

k
by x

k
and ej by y, for the main term of the asymptotic equation

(36) is again obtained; i.e., this equation remains true also in the case j&e~b, b'1.

4. ASYMPTOTIC DERIVATION OF THE HOMOGENEOUS SOLUTIONS

Assuming that e is the small parameter of the problem, the homogeneous solutions will be
sought, corresponding to di!erent groups of the roots of the dispersion equation. The main
terms of the solutions, corresponding to the roots in equations (13)}(19) and in equations
(25)}(34), coincide with the well-known solutions of applied (two-dimensional) theory of
shells and are not presented here.

Consider "rst the case corresponding to the roots in equations (21)}(23). Using the
relation o"1#eg*, !1)g*)1 and expanding solutions into series with respect to the
small parameter e, roots are described by equation (21) (from here only amplitudes of the
displacements are presented; the stresses can be calculated according to the generalized
Hooke's law):

uok"eb~1
11

b
33

[(B
0
!b

11
s2
1
) cos (s

2
d
k
) cos (s

1
d
k
g*)

!(B
0
!b

11
s2
2
) cos (s

1
d
k
) cos (s

2
d
k
g*)#O(e)]

dm
k

dm
(k"1, 3, 5,2), (38)

umk"d
k
[s

1
(b

33
#b

13
s2
2
) cos (s

2
d
k
) sin (s

1
d
k
g*)

!s
2
(b

33
#b

13
s2
1
) cos (s

1
d
k
) sin (s

2
d
k
g*)#O(e)]m

k
,

where d
k
are roots of the equation

(s
2
!s

1
) sin [(s

2
#s

1
)d

k
]!(s

2
#s

1
) sin[(s

2
!s

1
)d

k
]"0.
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Similarly, for the case in equatiion (22)

u
pk
"e[(b

33
#i2!g2)D

1
cosh (id

k
g*) cos (gd

k
g*)

#2ig sinh (id
k
g*) sin (gd

k
g*)D

2
#O(e)]

dm
k

dm
(k"1, 3, 5,2) (39)

umk"!(b
31
#1)d

k
[aD

1
sinh (id

k
g*) cos (gd

k
g*)

#gD
2
cosh (id

k
g*) sin (gd

k
g*)#O(e)]m

k
,

where

D
1
"!ig (b

13
!1) sinh (id

k
) sin (gd

k
)#g2(b

13
#1) cosh (id

k
) cos (gd

k
),

D
2
"(b

33
!b

13
i2!g2 ) cosh (id

k
) cos (gd

k
)#ig (b

13
#1) sinh (id

k
) sin (gd

k
).

Finally, for the case of equation (23) it follows that

u
pk
"ep[(pd

k
sin (pd

k
)!

b
13
#2

b
13
#1

cos (pd
k
)) cos (pd

k
g*)

!g*pd
k
cos (pd

k
) sin (pd

k
g*)#O(e)]

dm
k

dm
(k"1, 3, 5,2), (40)

umk"d
k
[(pd

k
sin (pd

k
)!

1

b
13
#1

cos (pd
k
)) sin (pd

k
g*)

#g*pd
k
cos (pd

k
) cos (pd

k
g*)#O(e)]m

k
(m).

The expressions corresponding to the even values of k can be obtained from equations
(38)}(40) by replacing cosx by sinx, sin x by !cosx, cosh x by sinhx and sinhx by
!cosh x respectively.

When jePO(1) with eP0, the displacements in a thin hollow cylinder, executing
extra-high-frequency vibrations, are described by the expressions

u
pk
"e[(b

33
d2
k
#s2!h2

1k
) (b

33
d2
k
#b

13
h2
2k
#s2) cos (h

2k
) cos (h

1k
g*)

!(b
33

d2
k
#s2!h2

2k
) (b

33
d2
k
#b

13
h2
1k
#s2) cos (h

1k
) cos (h

2k
g* )#O (e)]

dm
k

dm
,

umk"(b
13
#1)d2

k
[(b

33
d2
k
#b

13
h2
2k
#s2) cos (h

2k
) sin (h

1k
g*)

!(b
33

d2
k
#b

13
h2
1k
#s2) cos (h

1k
) sin (h

2k
g*)#O(e)] m

k
(m) (k"1, 3, 5,2), (41)

where d
k
are the roots of the equation

h
1k

i
21

sin (h
1k

) cos (h
2k

)!h
2k

sin (h
2k

) cos (h
1k

)"0.

This equation follows from equation (37) taking into account the relation h
nk
"Jq

nk
.

Formulae, corresponding to the even values of k follow from equation (41) by replacing
cosx for sinx and sinx for !cosx respectively.

It is important to note that solutions, de"ned by equations (38)}(41), cannot be
determined from the applied theory of shells. The role of these solutions in the isotropic
theory of shells has been discussed in detail in reference [14].
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Similar to the isotropic case [14], it can be proved that for the transversely isotropic
cylinder the generalized orthogonality condition is true also:

P
o
2

o
1

(u
rp

qk
rz
!p

zp
u
zk

)o do"0 (pOk). (42)

Note that this condition does not allow the boundary conditions at the butt ends to be
satis"ed exactly. Apparently, in the general case only the method of reducing to the in"nite
systems of algebraic linear equations can be suggested. Nevertheless, for some special cases
at the butt ends the generalized orthogonality condition permits to present the solution in
the form of a series whose coe$cients can be de"ned exactly [14].

Furthermore, the condition in equation (42) can be useful for solving the in"nite system of
equations because it always permits at least one of the boundary conditions at the butt end
to be satis"ed exactly.

The process of reducing the boundary problem of the theory of elasticity to solving the
in"nite algebraic system is well known and is not discussed here. In the present article, the
homogenous solutions are obtained that can satisfy the boundary conditions at the butt
ends of a cylinder. The case of non-homogenous boundary conditions at the lateral surface
of the cylinder can be studied by the methods developed in references [21, 22].

5. COMPARSION WITH SOME APPLIED THEORIES

The results of analysis of the dispersion equation (12) are compared here with the ones
obtained by the Kirchho!}Love and Ambartsumjan applied theories [23]. Note that the
transverse-isotropic shell described in reference [23] in the co-ordinate system z, u, r,
corresponds to the orthotropic one in the co-ordinate system r,u, z, used in the present
article.

The equations of motion in displacements for the axisymmetric case in the
Kirchho!}Love theory have the form [23]

c
11

L2u
0

Lm
#c

12

Lw
0

Lm
"

hgr2
0

G
1

L2u
0

Lt2
; c

12

Lu
0

Lm
#Aw#

D
11

r2
0

L4w
0

Lm4 B"!

hgr2
0

G
1

L2w
0

Lt2
. (43)

Here u
0
"u

0
(m, t), w

0
"w

0
(m, t) are displacements of the shell middle surface in the

longitudinal and transverse directions; correspondingly c
11
"2(1#l)G

0
E
0
hb~1

0
,

c
22
"2(1#l)G

0
hb~1

0
, c

12
"2l

1
(1#l)G

0
hb~1

0
, D

11
"c

11
h2/3, where h is the thickness of

the shell. The solution of equation (43) is in the form

u
0
"A

1
exp(km#iut), w

0
"B

1
exp(km#iut).

It leads to the following dispersion equation:

D(Kr) (k, j
0
, e),b

0
D(Kr)

0
(k, j

0
)#(1/3)D(Kr)

1
(k, j

0
) e2"0, (44)

where

D(Kr)
0

(k, j
0
)"D

0
(k, j

0
), D(Kr)

1
(k, j

0
)"E2

0
G2

0
k6#b

0
E
0
G

0
j2
0
k4OD

1
(k, j

0
).

For the sake of comparison the results of asymptotic analysis of the dispersion equation
(44) for some characteristic cases are presented. From equation (44) the following groups
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of zeros for the function D(Kr) (k, j
0
, e) can be obtained:

(1) k
k
"k

k0
#k

k2
e2#2 (k"1, 2), D(Kr)

0
(k

k0
, j

0
)"D

0
(k

k0
, j

0
)"0, (45)

k
k2
"[6b

0
E

0
G

0
(j2

0
!G

0
)k

k0
]~1D(Kr)

1
(k

k0
, j

0
)O[6b

0
E
0
G

0
(j2

0
!G

0
)k

k0
]~1D

1
(k

k0
, j

0
),

(2) k
k
"k

k0
eq#k

k1
e3q#2, j

0
"Keq, q'0, (46)

k
k0
"$iK(E

0
G

0
)~1@2, k

k1
"$il2

1
K3(1/2)(E

0
G

0
)~3@2,

(3) k
k
"e~1@2 (k

k0
#ek

k2
#2), k4

k0
#3b

0
(G

0
!j2

0
) (E

0
G

0
)~1"0, (47)

k
k2
"l2

2
j2
0
[4(G

0
!j2

0
)k

k0
]~1.

In the case of the Ambartsumjan theory the equations of motion in terms of
displacements for the axisymmetric case have the form [23]

c
11

Lu
0

Lm2
#c

12

Lw
0

Lm
"

ghr2
0

G
1

L2u
0

Lt2
, c

12

Lu
0

Lm
#c

22
w!

h3r
0

12

Lu

Lm
"!

ghr2
0

G
1

L2w
0

Lt2
,

D
11

L2w
0

Lm3
!

h3r
0

12
D

11

L2u

Lm2
#

h3r3
0

12
u"0, (48)

where u"u(m, t) is the shear deformation function. The solution of equations (48) is sought
in the form

u
0
"A

2
exp (km#iut), w

0
"B

2
exp(km#iut), u"C

2
exp(km#iut)

that leads to the dispersion equation

D(A) (k, j
0
, e)"4(1#l)2b~2

0
[b

0
D(A)(k, j

0
)#D(A)

1
(k, j

0
) e2]"0, (49)

where

D(A)
0

(k, j
0
)"D

0
(k, j

0
),D(A)

1
(k, j

0
)"E

0
G

0
M(1/3)E

0
G

0
k6![(4/5)(1#l) (G

0
!j2

0
)

!1
3
b
0
j2
0
]k4!4

5
(1#l)j2

0
(G

0
!b

0
j2
0
)k2N.

From equation (49) the following groups of zeros of the function D(A) (k, j
0
, e) can be

reached

(1) k
k
"k

k0
#k

k2
e2#2 (k"1, 2), D(A)

0
(k

k0
, j

0
)"D

0
(k

k0
, j

0
)"0, (50)

k
k2
"[6(j2

0
!G

0
)b

0
E

0
G

0
k
k0

]~1D(A)
1

(k
k0

, j
0
)O[6 (j2

0
!G

0
)b

0
E
0
G

0
k
k0

]~1D
1
(k

k0
, j

0
),

(2) k
k
"k

k0
eq#k

k1
e3q#2, j

0
"Keq, q'0, k

k0
"$Ki (E

0
G

0
)~1@2, (51)

k
k1
"$il2

1
K3 (1/2) (E

0
G

0
)~3@2,
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(3) k
k
"e~1@2 (k

k0
#ek

k2
#2), k4

k0
#3b

0
(G

0
!j2

0
) (E

0
G

0
)~1"0, (52)

k
k2
"l2

2
j2
0
[4(G

0
!j2

0
)k

k0
]~1#3(1#l)(G

0
!j2

0
) [5E

0
G

0
k
k0

]~1.

Comparison of equations (45)}(47) and (50)}(52) with corresponding expansions (13), (25),
(18) from the three-dimensional theory show that the main terms of the expansions coincide,
while the subsequent terms di!er essentially. Note that in the case of the super-low-
frequency vibrations the two "rst terms of the expansions coincide.

Numerical simulations were performed for hollow magnesium and cadmium cylinders
with l"0)357, l

1
"0)252, l

2
"0)226, G

0
"1)021 and l"0)116, l

1
"0)254, l

2
"0)722,

G
0
"2)231 respectively [17]. The aim of the analysis was to compare the roots k of the

dispersion equations (12) (the three-dimensional theory), (44) (the Kirchho!} Love theory)
and (49) (the Ambartsumjan theory) in order to estimate the relative accuracy of these
applied theories. The range of the reduced frequency parameter j

0
(j2"2(1#l)j2

0
)

variation was chosen taking for the following restrictions into account: j
0
&O(1), j2

0
'G

0
,

j2
0
'G

0
b~1. This range corresponds to the case when the roots k

k
(k"1, 2) of equations

(12), (44), (49) are purely imaginary and have equal modulus, and between roots k
k
(k"3}6)

with equal modulus are two purely imaginary and two real roots (note that purely
imaginary roots correspond to penetrating solutions of the equations of motion). The fact
that for transversally isotropic material the relation G"E/2(1#l) is valid reference [15]
was taken into account.
Figure 1. Precision of the applied Kirchho!}Love and Ambartsumjan theories. Error estimations for the
magnesium tube.
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To characterize the relative accuracy of the applied theories the following parameters
were introduced:

D(Kr)
1

"K
k
k
!k(Kr)

k
k
k

K 100% (k"1, 2); D(Kr)
2

"K
k
k
!k(Kr)

k
k
k

K 100% (k"3}6);

D(A)
1

"K
k
k
!k(A)

k
k
k

K 100% (k"1, 2); D(A)
2

"K
k
k
!k(A)

k
k
k

K 100% (k"3}6).

Here k
k
(k"1, 2) and k

k
(k"3}6) are the roots of equation (12), described by equations (13),

(14) and (18), (19) respectively; k(Kr)
k

(k"1, 2) and k(Kr)
k

(k"3}6) are the roots of equation
(44), described by equations (45) and (47) respectively; k(A)

k
(k"1, 2) and k(A)

k
(k"3}6) are

the roots of equation (49), described by equations (50) and (52) respectively. Hence, the
quantities D(Kr)

1
, D(Kr)

2
and D(A)

1
, D(A)

2
characterize the relative error of calculation of the roots

of equation (12) on the basis of the Kirchho!}Love and Ambartsumjan theories,
correspondingly.

Figure 1 are presents results of calculations for the magnesium tube with di!erent values
of the non-dimensional wall-thickness parameter e. Similar data for cadmium tube are
presented in Figure 2.

It follows from Figure 1 that precision in determination of the "rst two roots (13) of
equation (12) for magnesium tube on the basis of the Kirchho!}Love and Ambartsumjan
theories is practically identical while calculation of the four roots (18) of equation (12) on the
Figure 2. Precision of the applied Kircho!}Love and Ambartsumjan theories. Error estimations for the
cadmium tube.
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basis the Ambartsumjan theory gives a smaller error than that on the basis of the
Kirchho!}Love theory. For the cadmium tubes (Figure 2) the same conclusion can be
drawn with respect to the "rst two roots (13) of equation (12) while the data for the four
roots (18) of equation (12) show that the Kirchho!}Love theory is more exact. Figures 1 and
2 also show that for both materials the accuracy in determination of all six roots (13), (18) of
equation (12) on the basis of the theories mentioned above increases with decreasing
non-dimensional wall-thickness parameter e.

The roots of the dispersion equation (12), de"ned by equations (21)}(23) and (36), cannot
be found within the Kirchho!}Love and Ambartsumjan theories and they demonstrate the
qualitative di!erence between the theory of anisotropic and isotropic elastic shells. It is
necessary to stress that both the results of reference [14] and the above analysis indicate
that introducing of the correcting terms into equations of the classical two-dimensional
shell theory cannot help to describe certain important dynamic phenomena for thin shells.
Only an asymptotic analysis of the three-dimensional equations is able to describe them.

Note that in the partial case G
0
"1 these results coincide with the results [12, 13], where

the corresponding isotropic case has been considered.

6. CONCLUSION

The solution of the dynamic problem for a transverse isotropic hollow cylinder, loaded by
axisymmetric harmonic loads at the butt ends and unloaded on the lateral surface, is given
on the basis of the dynamic theory of elasticity. The resulting dispersion equation was
studied by the asymptotic method and suggests that the cylinder is thin walled and the wall
thickness, related to the radius of the shell middle surface, represents the small parameter of
the problem.

The properties of the roots of the dispersion equation, characterizing the oscillation
patterns in di!erent frequency regions, were investigated. On the basis of this analysis the
asymptotic representations of the equations integrals have been reached.

The asymptotic analysis made it possible to receive both solutions, corresponding to
applied (two-dimensional) theories of shells, and others, which cannot be obtained on the
basis of the latter. These solutions play an important role in describing of the stress}strain
state in dynamics of the thin-walled cylinder.

The cases where the stress}strain states for isotropic and transverse isotropic thin-walled
cylinders di!er essentially, were established. It was shown that for certain relations between
elastic constants of the material and the frequency parameter, the properties of the integrals
of the equations of the dynamic theory of elasticity are changed.

The roots of the dispersion equation, within the three-dimensional theory, and others
taken from applied Kirchho!}Love and Ambartsumjan theories, are compared both
analytically and numerically. It is shown that accuracy in approximate evaluation of the
roots of the exact dispersion equation within the Kirchho!}Love and Ambartsumjan
theories, respectively, depends on the tube material.

Note that from the present study, there exists a certain group of roots of the
three-dimensional dispersion equation, which is governed by the essential anisotropy of the
material and cannot be included within both the classical Kirchho!}Love and the
improved Ambartsumjan theories.
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APPENDIX A: NOMENCLATURE

u
r
, u

z
displacements of the cylinder in the transverse and longitudinal directions

uo , um non-dimensional displacements of the cylinder in the transverse and longitudinal
directions

r
1
, r

2
inner and outer radii of the hollow cylinder
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r
0

radius of the tube middle surface, r
0
"(r

1
#r

2
)/2

m, o non-dimensional axial and radial co-ordinates
o
1
, o

2
non-dimensional inner and outer radii of the hollow cylinder

u angular frequency
g density of material
G, G

1
, l, l

1
, E, E

1
elastic constants

j2 frequency parameter, j2"gr2
0
u2G~1

1j2
0

reduced frequency parameter, j2
0
"j2/2(1#l)

p
r
, p

z
, q

rz
radial, longitudinal and shear components of the stress tensor

k the spectrum parameter
J
n
(x), Y

n
(x) Bessel's functions of the "rst and second kind and order n

e non-dimensional wall-thickness parameter, e"(o
1
!o

2
)/2

t time
l half of the cylinder's length
u
0
, l

0
displacements of the shell middle surface in the longitudinal and transverse
directions

h thickness of the shell
u(m, t ) the shear deformation function
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